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Abstract: Water resource managers require accurate estimates of the 7-day, 10-year low flow (7Q10)
of streams for many reasons, including protecting aquatic species, designing wastewater treatment
plants, and calculating municipal water availability. StreamStats, a publicly available web application
developed by the United States Geologic Survey that is commonly used by resource managers
for estimating the 7Q10 in states where it is available, utilizes state-by-state, locally calibrated
regression equations for estimation. This paper expands StreamStats’ methodology and improves
7Q10 estimation by developing a more regionally applicable and generalized methodology for 7Q10
estimation. In addition to classical methodologies, namely multiple linear regression (MLR) and
multiple linear regression in log space (LTLR), three promising machine learning algorithms, random
forest (RF) decision trees, neural networks (NN), and generalized additive models (GAM), are
tested to determine if more advanced statistical methods offer improved estimation. For illustrative
purposes, this methodology is applied to and verified for the full range of unimpaired, gaged basins in
both the northeast and mid-Atlantic hydrologic regions of the United States (with basin sizes ranging
from 2–1419 mi2) using leave-one-out cross-validation (LOOCV). Pearson’s correlation coefficient
(R2), root mean square error (RMSE), Kling–Gupta Efficiency (KGE), and Nash–Sutcliffe Efficiency
(NSE) are used to evaluate the performance of each method. Results suggest that each method
provides varying results based on basin size, with RF displaying the smallest average RMSE (5.85)
across all ranges of basin sizes.

Keywords: machine learning; statistical methods; hydrology; extreme hydrologic events; long-term
forecasting

1. Introduction

Estimates of the magnitude and reoccurrence intervals of low-flow events on rivers
and streams are a necessary input for many natural resources planning activities, including
municipal, industrial, and agricultural planning [1]. Resource managers in the northeast
and mid-Atlantic United States are specifically interested in 7-day, 10-year low-flow (7Q10)
estimation for protecting aquatic species that may be impacted by water withdrawal,
hydropower production, or discharge of wastewater. In addition, 7Q10 estimation is used
in a variety of other design facets, including water quality management, water supply
planning, cooling plant design, hydropower regulation, irrigation, recreation, and more [2].
Classical 7Q10 estimation in ungaged basins commonly relies on simple statistical models
that are calculated at similar, gaged sites [3]. For example, the USGS’s widely used statistical
estimation program StreamStats uses multiple linear regression equations derived in log
space, calibrated on gaged sites, to estimate flow statistics at ungaged sites [4]. These
regression equations make use of the concept of “stationarity”, i.e., the assumption that
the statistical properties of streams do not change over time. Relatively recent studies

Water 2023, 15, 2813. https://doi.org/10.3390/w15152813 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15152813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-6515-3671
https://orcid.org/0000-0002-0231-5685
https://doi.org/10.3390/w15152813
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15152813?type=check_update&version=1


Water 2023, 15, 2813 2 of 31

have suggested that the climate and associated hydrologic processes no longer satisfy that
assumption, exposing a weakness in the stationary modelling approach [5–8]. For instance,
it is estimated that the southwestern United States is currently experiencing its driest 22 yr
period since 800 CE and approximately 20% of it can be attributed to recent anthropogenic
changes [9]. In contrast, studies in the northeast have found both average baseflows
and 7-day summer baseflows are increasing with statistical significance [10,11]. In the
mid-Atlantic, Blum et al. (2019) found increasing 7Q10s in the northern part of the mid-
Atlantic (New York, Pennsylvania) and decreasing 7Q10s in lower mid-Atlantic (Virginia,
Maryland), concluding that because of these trends, “using the most recent 30 years of
record when a trend is detected reduces error and bias in 7Q10 estimators compared to use
of the full record” [2]. Outside of trend detection, few statistical alternatives exist in practice
to account for changing climatic conditions in statistical 7Q10 estimation in ungaged basins.

In addition to assuming stationarity, StreamStats’ 7Q10 estimation suffers from a
variety of other drawbacks, including (1) lack of development in some states, (2) being
applicable to only relatively small basins, and (3) minimal statistically significant input
variables that vary greatly by state. Because the 7Q10 is an extremely common planning
metric, many states rely on 7Q10 estimation for permits related to stream withdrawals and
wastewater treatment. In 2019, the Connecticut Department of Energy and Environmental
Protection was forced to change their permitting laws from using the 7Q10 to using a
similar drought metric, the Q99 flow, because StreamStats 7Q10 estimation has not been
developed for Connecticut: https://portal.ct.gov/DEEP/Water/Water-Quality/Triennial-
Review-of-the-Connecticut-Water-Quality-Standards (accessed on 6 April 2021). The use
of state boundaries to dictate homogenous hydrologic areas also limits the amount of
unimpaired data that is available to develop the regression equations. Developing these
regression equations requires ample unimpaired training data in a homogenous area of
interest, which can sometimes be impossible to achieve in practice [12], as exemplified
by the case of Rhode Island. Due to a lack of sufficient unimpaired, gaged basins in
Rhode Island, some gages from Massachusetts and Connecticut (which itself does not have
7Q10 estimation developed) were used to develop the 7Q10 regression equations for Rhode
Island [13]. This suggests that we may be able to expand these regression equations to cover
larger geographic footprints that are not dictated by state lines, as we are already using
data from other states to develop these equations. Classical 7Q10 estimation techniques
also rely on regression equations that were only developed for relatively small basin sizes
(i.e., <100 mi2), either state by state or localized to larger watersheds [4]. This helps maintain
the homogeneity of the applicable area, which maintains the accuracy of estimates but does
not allow for larger basin estimation and limits the ability to compare estimates between
states, regions, and watersheds since different equations and input variables are used to
make estimates in nearby states. In the extreme case, ungaged locations a few feet apart
on the same stream but across a state border can utilize differing regression equations,
which can result in different estimates. These equations rely heavily on the watershed
area as the most significant variable, but the other variables vary significantly depending
on the state. In some cases, watershed size is the only significant variable used to make
7Q10 estimates [14]. Many other studies in this area have attempted to apply landcover,
climate, and topographical variables with varying levels of success [15–18]. One set of
statistically significant input variables for the entire northeast and mid-Atlantic would allow
(1) data augmentation where 7Q10 estimation has not been developed, (2) comparisons
of 7Q10 estimates between states, and (3) better understanding of the input variables
themselves, including potential sensitivity analyses that involve changing climate and/or
landcover inputs.

Regression equations typically rely on multiple linear regression in log space (LTLR)
rather than standard multiple linear regression (MLR) because Tasker and Stedinger
(1989) [19] demonstrated that (log-transformed) GLS analysis is theoretically most ap-
propriate and generally provides the best results when used for hydrologic regressions,
which was then used in standard regression analysis of peak- and low-flow frequency statis-
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tics, such as the 100-year peak flow and the 7-day, 10-year low flow [20]. Applying a more
advanced statistical method may allow for improved estimation, requiring less input data,
detecting the subtle importance of additional variables, and maintaining accuracy over
larger spatial footprints. Though machine learning has been used in hydrology for several
decades, the application of this technique has accelerated with increased access to data and
computational power [21]. Many recent studies have benefitted from machine learning to
improve streamflow estimation, including using artificial neural networks (ANN), support
vector machines (SVM), and random forests (RF) [22–26]. Studies have even demonstrated
that machine-learning-based models, which are calibrated based on historical streamflow
records in gaged basins, can produce more accurate streamflow predictions in ungaged
basins than traditional process-based models [27]. Specifically for low-flow prediction,
machine learning algorithms have been used to estimate low-flow indices [28], for direct
low-flow prediction using random forest [29], and for evaluation of statistical methods in
low-flow prediction [30]. Due to these successes, Nearing et al. (2021) state, “it is entirely
possible that successful water resources and water hazard predictions might not require
anything that looks even like a simple hydrology model in the future” [27].

To address the issues noted previously, this paper suggests three strategies to improve
estimations of 7Q10 flow for the northeast and mid-Atlantic United States:

1. Develop a single, generalized methodology for 7Q10 estimation that is applicable to
larger geographical regions (such as the northeast and mid-Atlantic regions of the
United States). This methodology will make use of publicly available data as inputs,
allowing resource managers to create accurate 7Q10 estimates in states where Stream-
Stats 7Q10 estimation has not been developed or as an alternative to StreamStats
where 7Q10 estimation has been developed;

2. Expand the range of applicable basin sizes to account for every gaged basin in the
northeast and mid-Atlantic that has been determined to be unimpaired. StreamStats’
state-by-state 7Q10 estimation relies on regression equations that were only developed
for small basins (i.e., <100 mi2) in most states, but unimpaired gaged basins in the
study area range from 2 to 1400 mi2. Our methodology is trained on every location,
ensuring sufficient locations for model training and allowing the application of the
method to a larger range of basin sizes than classical methods;

3. Include multiple landcover, climate, and topographical variables as inputs for esti-
mation. The additional input variables will increase the accuracy of 7Q10 estimates
over the large area of study, and the inclusion of landcover and climate variables
will facilitate future sensitivity analyses related to changing landcover and climate
variables in conjunction with physical hydrology models.

Additionally, we test three machine learning algorithms, random forest (RF) decision
trees, neural networks (NN), and generalized additive models (GAM), against classical
statistical methods for 7Q10 estimation (MLR and LTLR) which have been found to perform
similarly in practice [31]. These machine learning methods are applied for three reasons:
(1) They do not make assumptions about the underlying distribution of the data. (2) Even
though complex and essentially non-parametric, they are accurate and widely applied. And
(3) they are relatively easy to implement, making them appealing for resource managers to
use as alternatives to classical methods.

2. Data and Study Area
2.1. Study Area and Gages

The study area for this research is the northeast and mid-Atlantic United States,
defined here as the states of Maine, New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, New York, Pennsylvania, New Jersey, Delaware, Maryland, Virginia,
and West Virginia. The USGS’s Hydro-Climatic Data Network, HCDN-2009 [32] was used
to identify unimpaired streams in gaged watersheds of varying sizes and physical attributes
in the study area (ranging from 2.1 mi2 to 1419 mi2, Figure 1). Data for these 106 stations
from the HCDN were downloaded from the USGS Current Water Data for the Nation:
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https://waterdata.usgs.gov/nwis/rt (accessed on 18 December 2020). After reviewing
the watershed size distribution of the HCDN sites, we determined it lacked a sufficient
number of gages in extremely small watersheds (<30 mi2) for training data. In addition
to the HCDN sites, 59 small sites in Massachusetts, determined to be sufficient for 7Q10
training data [20], were added to the training data for a total of 165 sites throughout the
area of study. Appendix A includes a table of all sites used, and Figure 1 displays the
corresponding watersheds.

Water 2023, 15, x FOR PEER REVIEW 4 of 30 
 

 

West Virginia. The USGS’s Hydro-Climatic Data Network, HCDN-2009 [32] was used to 
identify unimpaired streams in gaged watersheds of varying sizes and physical attributes 
in the study area (ranging from 2.1 mi2 to 1419 mi2, Figure 1). Data for these 106 stations 
from the HCDN were downloaded from the USGS Current Water Data for the Nation: 
https://waterdata.usgs.gov/nwis/rt (accessed on 18 December 2020). After reviewing the 
watershed size distribution of the HCDN sites, we determined it lacked a sufficient num-
ber of gages in extremely small watersheds (<30 mi2) for training data. In addition to the 
HCDN sites, 59 small sites in Massachusetts, determined to be sufficient for 7Q10 training 
data [20], were added to the training data for a total of 165 sites throughout the area of 
study. Appendix A includes a table of all sites used, and Figure 1 displays the correspond-
ing watersheds. 

 
Figure 1. The 165 gages and their corresponding watersheds used for this analysis. Gages are dis-
played as blue triangles, the standard convention by the USGS for designating gaging stations. 
Watersheds are displayed as distinct colors to facilitate differentiation. 

Figure 1. The 165 gages and their corresponding watersheds used for this analysis. Gages are
displayed as blue triangles, the standard convention by the USGS for designating gaging stations.
Watersheds are displayed as distinct colors to facilitate differentiation.

2.2. Input Variables/Data

Daily precipitation and temperature data were extracted at each gage from the Livneh
et al. (2015) [33] hydrometeorological dataset [34]. This dataset contains air temperature
and precipitation data from approximately 20,000 weather stations monitored by GHCN-
daily (U.S.), Environment Canada, and Servicio Meteorológico Nacional (Mexico) [33].

https://waterdata.usgs.gov/nwis/rt
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A minimum of 20 years of data was required for CONUS and Canadian stations, but
due to the relative paucity of station data in Mexico, the authors followed the procedure
recommended by Zhu and Lettenmaier (2007) [35], which requires a minimum of 50 valid
days of data in any given year for a station to be included. From this station data, the data
was interpolated using the SYMAP algorithm [36], which employs statistical methods such
as clustering analysis, regression analysis, and correlation analysis to identify patterns and
relationships within spatial data. After interpolation, the authors followed procedures
for quality control by computing a monthly coefficient of variation based on the standard
deviation of the daily values compared to their monthly mean and removed months with
a ratio of less than 0.18, determined empirically using 25 stations from 7 states with at
least 15 years of data [33]. This dataset is publicly available, with gridded climate variables
at 1/16◦ horizontal resolution (~6 km) from 1950–2013 [34]. Static land data, including
mean basin elevation, mean basin slope, forest and wetland percentages of the basin, and
watershed area, were collected from USGS StreamStats Data-Collection Station reports:
https://streamstatsags.cr.usgs.gov/gagePages/html/ (accessed on 19 July 2021).

2.3. 7Q10 Comparison Data

To compare 7Q10 estimates from this experiment to current statistical methodologies,
we use the USGS’s statistical estimation program StreamStats because of its wide usage
in the states for which it has been developed in the northeast and mid-Atlantic. This
program uses logarithmic-transformed linear regression (LTLR) equations to estimate flow
statistics [4]. Where applied, different regression equations and variables are calculated for
each state. Furthermore, states in the mid-Atlantic region use different equations (and in
some cases, different variables) based on hydrologic regions within each state. Table 1 lists
the candidate states and the corresponding variables used for 7Q10 estimation. Connecticut,
Delaware, Maryland, New Jersey, New York, and Vermont are included last, as StreamStats
7Q10 estimates have not been developed for these states. Out of the 165 gaged sites used
for training, raw 7Q10 estimates from StreamStats were available for 128 sites.

Table 1. StreamStats 7Q10 estimation by state.

State Variables Used for 7Q10 Estimation

Massachusetts [20]

Drainage area
Area of stratified-drift deposits per unit of stream length
plus 0.1
Mean basin slope
Indicator variable, 0 in the eastern region, 1 in the
western region

Rhode Island [13] Drainage area
Stream density

New Hampshire [16]
Drainage area
Mean annual temperature
Jun to Oct average gage precipitation

Maine [15] Drainage area
Fraction of sand and gravel aquifers

Pennsylvania [17]
Region 1 (Southeast) 1

Region 2 (Central-east) 2

Region 3 (Northwest) 3

Region 4 (Southwest) 4

Region 5 (Northeast) 5

Drainage area 1,2,3,4,5

Basin slope1

Mean elevation 3,4

Mean annual precipitation 2,3

Stream density 2

Soil thickness 1,2

Percent glaciation 5

Percent carbonate bedrock 2

Percent forested area 5

Percent urban area 1

https://streamstatsags.cr.usgs.gov/gagePages/html/
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Table 1. Cont.

State Variables Used for 7Q10 Estimation

Virginia [14]
Coastal Plain 1

Piedmont 2

Blue Ridge 3

Valley and Ridge 4

Appalachian Plateaus 5

Mesozoic Basins 6

Drainage area 1,2,3,4,5,6

West Virginia [18]
North 1

South Central 2

Eastern Panhandle 3

Drainage area 1,2,3

Longitude of basin centroid 1

Connecticut, Delaware, Maryland,
New Jersey, New York, Vermont Unavailable

3. Materials and Methods

In this section, the materials and methods used in this research are described. This
includes the calculation of the historical 7Q10 at each site (Section 3.1) based on the his-
torical data, each statistical method being compared (Section 3.2), the input variables
included (Section 3.3), a cross-validation procedure for testing (Section 3.4), and the various
efficiency/error metrics used to evaluate the performance of each method (Section 3.5).

3.1. 7Q10 Values at Each Site

The historical 7Q10 values based on historical data for each site were extracted from the
USGS’s StreamStats Data-Collection Station Reports described in Section 2.2. In addition,
if at least 30 years of continuous, daily streamflow data is available for a site, the “fasstr”
software package: https://cran.r-project.org/web/packages/fasstr/index.html (accessed
on 19 July 2021) is used to calculate the 7Q10 directly from the daily streamflow data. This
package fits a quantile distribution to daily streamflow data that allows for the efficient
calculation of low-flow frequency analysis metrics, including the 7Q10. As expected, these
7Q10 values were virtually identical to the 7Q10 values calculated by the USGS at each
site. These values, noted as the “true 7Q10” values for each site, can also be found in
Appendix A.

3.2. Statistical Methods

In this analysis, five statistical methods are applied. Two classical statistical methods,
namely multiple linear regression (Section 3.2.1) and logarithmic-transformed linear re-
gression (Section 3.2.2), are tested alongside three machine learning algorithms, namely
random forest decision trees (Section 3.2.3), neural networks (Section 3.2.4), and generalized
additive models (Section 3.2.5). For the machine learning algorithms, feature scaling is
applied to the input variables before method application using min-max normalization:

x =
x − xmin

xmax − xmin
(1)

3.2.1. Multiple Linear Regression

Multiple linear regression (MLR) is a simple, common methodology that takes the
general form of

Yi = b0 + b1X1 + b2X2 + . . . + bnXn + εi (2)

where Yi is the estimate of the dependent variable for site i, X1 to Xn are the n independent
variables, b0 to bn are the n + 1 regression model coefficients, and εi is the residual error
for site i. Assumptions for use of MLR are (1) the relationship displays linearity, (2) the
mean of εi is zero, (3) the variance of the εi is constant and independent of Xn, (4) the εi

https://cran.r-project.org/web/packages/fasstr/index.html
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are normally distributed, and (5) the εi are independent [37]. For this study, we force the
intercept b0 to be 0 since a basin with 0 area should have 0 flow.

3.2.2. Logarithmic-Transformed Linear Regression

Logarithmic-transformed linear regression (LTLR) is the most used method for 7Q10
estimation because it can correct for spatial correlation and differences in streamflow record
lengths [19]. In addition, streamflow and basin characteristics used in hydrologic regression
have been found to be log-normally distributed, with residuals (calculated by subtracting
the estimated values from the observed values) that were not randomly distributed when
multiple linear regression was applied, suggesting that the variables should be transformed
to log space [20]. This results in a model of the form

log Yi = b0 + b1log X1 + b2log X2 + . . . + bnlog Xn + εi

Using base 10, the equation takes the general form of

Yi = 10b0
(

Xb1
1

)(
Xb2

2

)
. . .
(

Xbn
n

)
10εi (3)

Though theory suggests that LTLR is the preferred method for 7Q10 estimation, in
practice, both MLR and LTLR have been found to perform similarly [31].

3.2.3. Random Forest

The random forest (RF) algorithm applied here is a non-parametric, tree-based regres-
sion model [38]. RFs use bootstrap aggregation, where bootstrap samples are randomly
chosen with substitution seeking a lower test error by variance reduction. RFs consist of
numerous decision trees (Figure 2).
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The RF model is optimized by tuning or calibrating its three major hyperparameters:
(1) “mtry”, the number of predictors that will be randomly sampled at each split when
creating the tree models; (2) “ntrees”, the number of decision trees contained in the ensemble;
and (3) the minimum size of terminal nodes, “nt”. All parameters were manually tuned to
create a stable model using the package “randomForest”: https://cran.r-project.org/web/
packages/randomForest/index.html (accessed on 20 July 2021) in R.

3.2.4. Neural Networks

Neural networks (NN) are a class of machine learning algorithms inspired by the
structure and function of the human brain [39]. The three primary types of layers are the
input layer, one or more hidden layers, and the output layer. Each neuron takes inputs,
performs a weighted sum of these inputs, applies an activation function to produce an
output, and then passes this output to neurons in the next layer. The connections between
neurons have associated weights, which the network learns from data during the training
process. The network adjusts its weights iteratively using optimization algorithms to
minimize the difference between its predictions and the actual targets. A simple neural
network structure is highlighted in Figure 3.
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Neural networks are optimized by tuning major parameters, including the number
of hidden layers, the limiting threshold for the partial derivatives of the error function as
stopping criteria, and the maximum allowable steps for training. Additionally, the number
of neurons per hidden layer, initial weights, activation functions, and learning rate can be
customized for different scenarios. All parameters were manually tuned to create a stable
model that converges using the “neuralnet” package: https://www.rdocumentation.org/
packages/neuralnet/versions/1.44.2/topics/neuralnet (accessed on 21 July 2021) in R.

3.2.5. Generalized Additive Models

Generalized additive models (GAM) [40] represent a flexible extension of traditional
linear models. GAMs capture non-linear dependencies of data through the application of
smoothing functions which allows for finding complex relationships between variables. By
employing smoothing functions such as cubic regression splines, GAMs accommodate non-
linear patterns and mitigate issues of model misspecification. This property of GAMs makes
it well-suited for scenarios where linear models may fall short in capturing intricate patterns.
Furthermore, GAM does not impose assumptions on the underlying distribution of the
response variable, enabling it to incorporate various response distributions appropriately.

https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://www.rdocumentation.org/packages/neuralnet/versions/1.44.2/topics/neuralnet
https://www.rdocumentation.org/packages/neuralnet/versions/1.44.2/topics/neuralnet
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An example of a standard linear model and a GAM applied to the same data is provided in
Figure 4.
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GAMs are optimized by tuning several parameters, including “gamma” to increase
smoothing, “family” to specify the distribution to be used, and “weights” to designate
prior weights on the contribution of the data to the log-likelihood. All parameters were
manually tuned to create a stable model using the GAM function from the “mgcv” package:
https://www.rdocumentation.org/packages/mgcv/versions/1.9-0/topics/gam (accessed
on 17 August 2021) in R.

3.3. Input Variables

Statical land data, including mean basin elevation, percent mean basin slope, percent
landcover considered wetland and forest, and basin area, were collected from the USGS’s
StreamStats Data-Collection Station Reports. These data are direct inputs into the statistical
models. In addition, timeseries of daily precipitation and maximum temperature were
extracted at each of the gages from Livneh et al., 2015. A running cumulative 30-day
precipitation value was calculated, as well as the corresponding average 30-day maximum
daily temperature. Attempting to isolate when a 7Q10 flow would occur, we extracted the
lowest 30-day cumulative precipitation limited to only 30-day periods of high temperatures
(>90th percentile). The 30-day cumulative precipitation and corresponding high average
temperature were recorded. A list of all input variables is included in Table 2.

Table 2. Input variables for estimating 7Q10.

Variable Description

Area (mi2) Watershed area
Mean Elevation (ft) Average elevation of the watershed

Slope (%) Average basin slope
Percent Wetland (%) Wetland percentage of the watershed
Percent Forest (%) Forest percentage of the watershed

Min 30-day Cumulative Precipitation (mm)
Lowest 30-day cumulative precipitation,

limited to abnormally hot periods
(X > 90th percentile temperatures)

Average 30-day High Temperatures (C)
Average 30-day temperature during the

corresponding period of low
cumulative precipitation

3.4. Leave-One-Out Cross-Validation (LOOCV)

The leave-one-out cross-validation (LOOCV) method is an extreme version of K-fold
cross-validation where K = N [41]. It is an iterative process that is executed the same

https://www.rdocumentation.org/packages/mgcv/versions/1.9-0/topics/gam
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number of times as the number of data points. Only one value is used as the test set, while
all other values are used as the training set. This iterative process is run for every value so
that there is a test set value for every value in the dataset, which allows for a new test set to
be created with all of the individual test set values (Figure 5). The new test set can then
be evaluated using traditional error metrics and analysis. LOOCV can be computationally
intensive, but for relatively small datasets, it can provide better performance than K-fold
cross-validation due to the largest possible training set being used to estimate each test set
value [41].
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3.5. Error Metrics

R2 and RMSE are used to directly evaluate the random and systematic error of each
method. In addition, the Nash–Sutcliffe Efficiency (NSE) and the Kling–Gupta Efficiency
(KGE) are also included because of their frequent usage for evaluating streamflow models.

The widely known coefficient of determination, R2 [42], will be one of the metrics
for evaluating model performance. Values range from 0 (no correlation) to 1 (perfect
correlation). This value is calculated using the following equation:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

Here, yi is the observed 7Q10, ŷ is the model predicted 7Q10, and n is the number of
samples used in the calculation.

RMSE is used to evaluate error because it is among the most used indicators for
evaluation of model performance [43]. Similar studies have also chosen RMSE over MAE
for its sensitivity to outliers [44]. The general equation is given by

RMSE =

√
1
n
∗

n

∑
1
(yi − ŷi)

2 (5)
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Hydrologists commonly use the Nash–Sutcliffe Efficiency [45] and Kling–Gupta Effi-
ciency [46] for streamflow modelling evaluation. The Nash–Sutcliffe Efficiency (NSE) sig-
nals a model’s ability to predict variables different from the mean. NSE is calculated given

NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi − O

)2 (6)

NSE values range from negative infinity (indicating a poor model) and 1 (indicating a
perfect fit between observed and predicted values). Negative values indicate that the mean
is a better predictor of the observed values than the model.

Furthermore, the Kling–Gupta Efficiency (KGE) [46] is widely used for hydrologic
applications [47,48]. KGE provides three components, the general correlation (r term),
the bias (beta term), and the relative variability (alpha term), between the modelled and
observed values. KGE is calculated using the following formula:

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (7)

α =
σm

σo

β =
µm

µo

where σm is the standard deviation of model, σo is the standard deviation of reference,
µm is the mean of model, and µo is the mean of reference. Like NSE, KGE values range
from negative infinity (poor performance) to 1 (best performance). Here, r is Pearson’s
correlation coefficient, α represents the variability error, and β indicates the bias error.

The methodology of this paper is summarized in Figure 6. This figure includes all
datasets, variables, and methods utilized.
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4. Results and Discussion

In this section, the development (Sections 4.1–4.5) and general performance
(Sections 4.6 and 4.7) of each statistical model are evaluated. For all methods excluding
neural networks where it is not applicable, we present the significance of variables using
the standard p-value, with four thresholds given by minorly significant (0.1 > X > 0.05),
moderately significant (0.05 > X > 0.01), largely significant (0.01 > X > 0.001), and extremely
significant (X < 0.001).

4.1. Multiple Linear Regression

Applying multiple linear regression to the input variables, with the constraint that the
intercept b0 is set to 0, gives the following results (Table 3).

Table 3. Multiple linear regression variables and significance.

Variable Estimate p-Value Significance

Area (mi2) 0.0579833 2 × 10−16 <0.001

Mean Elevation (ft) 0.0014461 0.05343 <0.1

Slope (%) −0.2804801 0.00197 <0.01

Percent Wetland (%) −0.0618991 0.27690 No significance

Percent Forest (%) 0.0048811 0.86061 No significance

Min 30-day Cumulative
Precipitation (mm) 0.3421899 0.00246 <0.01

Average 30-day High
Temperatures (C) −0.0466718 0.58980 No significance

As expected, the area was found to be extremely significant at the 0.001 level. In
addition, slope and precipitation were found to be largely significant at the 0.01 level.
Elevation was found to be minimally significant at the 0.1 level but did show significance
and improved results. Neither landcover variable, the percentage of basin considered to be
forest or wetland, showed significance. The resulting equation, only including statistically
significant variables, results in the following:

7Q10 = 0.0579833 ∗ (Area) + 0.0014461 ∗ (Elevation)− 0.2804801 ∗ (Slope) + 0.3421899 ∗ (Precip)

(R Square = 0.7481, Residual Standard Error = 7.693, p-Value = 2 × 10−16).
The sign of each variable aligns intuitively with the expected relationship between

that variable and the 7Q10. Increasing area and precipitation allows for additional water
during low flows, leading to positive coefficients. Elevation and slope relate directly
to baseflows, and as baseflows play a large role in low flows, the relationship between
baseflow and 7Q10s should be similar. High elevations are typically associated with higher
baseflows [49], leading to an increasing relationship between 7Q10s and elevation. The
relationship between slope and 7Q10 was expected to be positive, but as noted by Rumsey
et al. (2015), “positive correlations between slope and baseflow are expected to be related to
effects of elevation, but slope steepness is known to affect rates of groundwater transmission
and determines whether groundwater will reach a channel network or be retained in the
soil” [49], making it reasonable that increasing slope may not increase 7Q10s.

Figure 7 presents the MLR 7Q10 estimates and the actual and historical 7Q10s. The
line represents a perfect fit, and the points closest to the line indicate lower bias.
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A known weakness of applying MLR for extremely low flow estimation is that the
residuals are not randomly distributed, as noted in most StreamStats low flow reports cited
earlier. Plotting the residuals, from the smallest to largest observed 7Q10, confirms this
(Figure 8).
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Though the MLR fit is statistically significant, the plot of residuals suggests that
MLR may not be the appropriate method for this case. Because of this, the next method,
logarithmic-transformed linear regression (LTLR), is the traditional method for estimating
7Q10s in small basins. This method is traditionally used by StreamStats, though StreamStats
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reports refer to it as generalized least squares regression with a logarithmic transformation.
This methodology accounts for the drawbacks of simple MLR, including the non-random
residuals, spatially distributed correlation, and differences in record lengths.

4.2. Logarithmic-Transformed Linear Regression

Similarly, applying LTLR to the same input data leads to the following results, given
in Table 4.

Table 4. Logarithmic-transformed linear regression variables and significance.

Variable Estimate p-Value Significance

Intercept 4.27157 0.1590 No significance
Area (mi2) 1.31308 2 × 10−16 <0.001

Mean Elevation (ft) −0.11573 0.2908 No significance
Slope (%) −0.19413 0.0303 <0.05

Percent Wetland (%) −0.02036 0.7542 No significance
Percent Forest (%) 0.22437 0.0489 <0.05

Min 30-day Cumulative
Precipitation (mm) 0.31049 0.0160 <0.05

Average 30-day High
Temperatures (C) −4.37462 0.0309 <0.05

In log space, only area was found to be extremely significant at the 0.001 level, while
slope, precipitation, and temperature are moderately significant at the 0.05 level. Addi-
tionally, the percentage of the basin considered to be forest was found to be moderately
significant at the 0.05 level in log space when it was not found to be significant using basic
MLR. Once again, the percentage of the basin considered to be wetland was not found to
be significant, but surprisingly, elevation was not found to be significant in log space, while
it was just above the threshold for moderate importance (p-value~0.05) using MLR. Only
including the significant variables leads to the following equation:

log(7Q10) = 1.31308 ∗ log(Area)− 0.19413 ∗ log(Slope) + 0.22437 ∗ log(Forest)+
0.31049 ∗ log(Precip)− 4.37462 ∗ log(Temp)

R Square = 0.67, Residual Standard Error = 0.6139, p-Value = 2 × 10−16.
Once again, plotting the estimated values vs. the actual historical 7Q10s (but this time,

in log space) is displayed in Figure 9.
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This fit is noticeably more linear but moves away from linearity for extremely small
7Q10 values (Actual 7Q10s < 10−1 cfs). These extremely small points can be ignored due to
significant figures, as these very small numbers suggest that the stream’s 7Q10 is essentially
0 flow (ephemeral streams). More importantly, a goal of this experiment is to include much
larger basin areas (and their corresponding 7Q10s) than are traditionally accounted for
in regression equations. The largest 7Q10s, which correspond with the largest basins in
the analysis, are found in the top right of Figure 9 and seem to continue to fit the general
trend of linearity in log space. However, it should be noted that even though those points
are similar distances from the line in log space, the difference is much larger than Figure 6
suggests. The three points correspond to actual 7Q10s of 79.67, 59.16, and 90.51 cfs, with
their corresponding estimates to be 151.21, 170.09, and 167.49 cfs, respectively. To further
examine this, Figure 10 displays the residuals in log space, once again arranged from
smallest to largest 7Q10.
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Besides the three points in the bottom right corner of Figure 10, which were discussed
previously, the residuals in Figure 10 appear to be more consistently distributed than the
residuals in Figure 8, suggesting that using LTLR is the preferred method over general
MLR for 7Q10 estimation.

The final equation, translated back into standard space, is given below.

7Q10 = Area1.31308Slope−0.19413Forest0.22437Precip0.31049Temp−4.37462

4.3. Random Forest

Applying the random forest (RF) machine learning algorithm to the input data yields
the following results in Table 5.

Area was found to be significant at the 0.01 level, with elevation and precipitation
significant at the 0.05 level, and both slope and percent forest significant at the 0.1 level.
Temperature was not found to be significant using the random forest model or the multiple
linear regression model, making it only significant in log space. In all three cases so far
(MLR, LTLR, and RF), the percentage of the basin considered wetland was not found to be
significant. Figure 11 displays the estimated out-of-bag error as a function of the number of
decision trees.
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Table 5. Random forest variables and significance.

Variable % Included MSE p-Value Significance

Area (mi2) 57.580982 0.0099 <0.01
Mean Elevation (ft) 6.911398 0.03465 <0.05

Slope (%) 2.257348 0.07228 <0.1
Percent Wetland (%) −2.099959 0.9901 No significance
Percent Forest (%) 3.335443 0.08911 <0.1

Min 30-day Cumulative
Precipitation (mm) 7.726635 0.04275 <0.05

Average 30-day High
Temperatures (C) 1.265636 0.6634 No significance
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Figure 11 displays that the model stabilized around 100 trees. Though the RF method does
not make assumptions about normality, a plot of the residuals given in Figure 12, once again
arranged from the smallest to largest 7Q10, shows that they are not randomly distributed.
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Plotting the 7Q10 values estimated using the random forest method vs. the actual
historical 7Q10s is given in Figure 13.
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For relatively smaller 7Q10s, RF estimates are similar to the other methods. However,
RF underestimates actual historical 7Q10s that are over 20 cfs. For this range, there are only
3 points above the line (overestimation) and 11 points under the line (underestimation). This
range is specifically difficult to estimate because there are very few unimpaired watersheds
in the study area that are large enough to have 7Q10s in this range, limiting the available
training data.

4.4. Neural Network

Neural networks were applied to the input data using a variety of tuning parameters.
The addition of multiple hidden layers increased computation time, caused failure to
converge in some cases, and did not improve model performance, so the final neural
network described only included one hidden layer, an associated convergence threshold of
0.01, and a maximum step of 1 × 105. In this section, no table of variable importance and
significance is included, as calculating p-values for neural networks is not common practice.
Neural networks are highly complex models with multiple weights and parameters. When
calculating p-values for each weight or parameter, it is effectively conducting multiple
hypothesis tests for each. This introduces the risk of the multiple comparisons problem [50],
where the probability of obtaining false positives (significant p-values) increases, which can
lead to misleading results. Instead, we display the general results in Figure 14.

Figure 14 displays that the NN model overestimates smaller 7Q10s (especially in the
0–20 cfs range) and overestimates 7Q10s larger than 20 cfs (7 points below the line, as
opposed to 2 above). This should be corroborated by the residuals, which are displayed in
Figure 15, once again organized from smallest actual 7Q10 to largest.
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Figure 15. Residuals for the neural network model (cfs).

Figure 15 suggests that the neural network consistently overestimates the smaller
7Q10 values and underestimates the larger 7Q10 values. Even if this model proves to have
the smallest error metrics in Sections 4.6 and 4.7, this is a significant drawback.

4.5. Generalized Additive Model

GAM was applied to the input data with a variety of tuning parameters. No initial
weights or scale parameters were given, and the optimal model was found using the
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Gaussian distribution with generalized cross-validation (GCV). The optimal GAM model
yields the following results in Table 6.

Table 6. Generalized additive model variables and significance.

Variable Estimated Degrees
of Freedom p-Value Significance

Area (mi2) 8.407 0.000000 <0.001
Mean Elevation (ft) 8.143 0.000608 <0.001

Slope (%) 1.000 0.230267 No significance
Percent Wetland (%) 1.315 0.160834 No significance
Percent Forest (%) 3.548 0.484701 No significance

Min 30-day Cumulative
Precipitation (mm) 1.661 0.017755 <0.05

Average 30-day High
Temperatures (C) 1.466 0.007338 <0.01

Area and elevation were both found to be extremely significant, while precipitation
and temperature were found to be moderately and largely significant. The only other
methodology where temperature was found to be significant was LTLR (linear regression
in log space), suggesting that there may be a subtle importance of this variable that was
not detected in standard space by MLR or RF. In addition to slope, neither of the landcover
variables were found to be significant using GAM. The estimated 7Q10 values vs. the actual
historical values are presented in Figure 16.
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Figure 16 does not suggest an obvious pattern in residuals. To further analyze the
model fit, we plot the residuals in Figure 17, once again organized from smallest actual
7Q10 to largest.
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The residuals for the larger basins seem to deviate from the perfect fit line, but the
residuals in Figure 17 seem to be much more randomly distributed than the neural network
model that displayed a clear pattern in Figure 15.

In the following sections, we will evaluate how each method performs in comparison
to StreamStats (Section 4.6) and in relation to each other (Section 4.7). Additionally, all
methods seem to perform worst for large 7Q10s, so Section 4.7 will highlight under what
range of basin sizes each method performs best, using RMSE as the main metric compared
to StreamStats estimates.

4.6. Comparisons to StreamStats Estimates

Current 7Q10 estimates were derived using the USGS’s StreamStats program, dis-
cussed in Section 2.3. Estimates are only available for some states in the domain, leaving
128 data points for comparison out of the 165 total used for training. In addition, no test set
was used in the StreamStats derivations, so comparing exact estimates from each method
without using a validation procedure is given in Table 7.

Table 7. Multiple method comparisons to current estimates.

Method R2 KGE NSE RMSE

StreamStats Estimates 0.66 0.66 0.65 9.88
Log-Transformed Linear Regression 0.67 0.54 0.62 13.50

Multiple Linear Regression 0.70 0.80 0.63 7.14
Random Forest 0.63 0.76 0.53 7.97

Neural Network 0.73 0.82 0.67 6.79
Generalized Additive Model 0.84 0.91 0.83 5.19

Most methods perform similarly, but GAM displays the best R2, KGE, NSE, and RMSE
by far out of all the methods. Because of the high flexibility of GAMs, they are prone to
overfitting, and this success will be further tested in Section 4.7 with LOOCV. The NN
model also displays a high R2 and KGE, but that is with the drawback that it overestimates
small 7Q10s and underestimates large 7Q10s, as highlighted in Figure 15. MLR and RF
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outperform current estimates by an average of 12% in terms of KGE, as well as 25% in terms
of RMSE, which is arguably the most important metric as it directly measures error. RF’s
success could also be due to overfitting, which is tested in the next section. MLR, however,
is a classical method for 7Q10 estimation and is not prone to overfitting. Given its success
compared to StreamStats for the exact same locations that were derived using state-by-state
equations, results suggest that a single, generalized methodology is appropriate.

4.7. General Performance

Comparing each method using leave-one-out cross-validation results in the following
metrics, given in Table 8.

Table 8. Comparisons between statistical methods using leave-one-out cross-validation.

Method R2 KGE NSE RMSE

Log-Transformed Linear Regression 0.72 0.50 0.62 15.24
Multiple Linear Regression 0.60 0.73 0.47 8.53

Random Forest 0.61 0.69 0.41 8.39
Neural Network 0.53 0.69 0.36 9.41

Generalized Additive Model 0.53 0.65 0.52 12.15

Table 8 confirms that the success displayed by both NN and GAM in the previous
section was due to overfitting. They display the two worst R2s and have RMSEs larger
than both RF and MLR. With the addition of a test set, the RF method performance only
declined 3.17% for R2 (0.61, down from 0.63), 9.21% for KGE (0.69, down from 0.76), 22.64%
for NSE (0.41, down from 0.53), and increased 5.27% for RMSE (8.39, up from 7.97). The
average decline for MLR and LTLR was similar, at 3.41% for R2, 8.08% for KGE, 12.70% for
NSE, and an increase of 16.18% for RMSE. This suggests that RF’s previous success was not
due to overfitting, as it displayed similar declines to LTLR and MLR, which utilize straight
lines for fitting.

Each method performs differently based on the evaluation metric used. One explana-
tion for this is the wide range of basin sizes included in this analysis. This is highlighted in
the plots of residuals earlier, which demonstrated that many models perform poorer for
larger 7Q10s. Splitting the data into three distinct subsets based on basin size will allow us
to further examine why some methods display high R2 but poor RMSE. For this analysis,
small basins are defined as basins under 15 mi2, while medium basins are basins between
15 and 70 mi2, and large basins are basins larger than 70 mi2. These thresholds do not
have any physical meaning and are simply selected to divide the full dataset into three
equally sized subsets for further analysis. In Table 9, we provide the RMSE for each method
applied to each basin size range. Especially for these subsets, RMSE is the best metric to
base success on, as it measures the error of estimates vs. the actual values, which is the
most important metric for resource managers who need accurate 7Q10 estimates.

Table 9. RMSE comparisons between methods for specified size ranges.

RMSE for Each Methodology

Subset MLR LTLR RF NN GAM

Small Basins (<15 mi2) 2.11 0.34 0.44 2.77 2.97
Medium Basins (15–70 mi2) 3.96 2.83 3.09 3.87 4.66

Large Basins (>70 mi2) 14.02 26.23 14.01 15.60 20.32
Average 6.70 9.80 5.85 7.41 9.31

Table 9 demonstrates that LTLR and RF perform similarly well for 7Q10 estimation
in both small- and medium-sized basins, greatly outperforming MLR, NN, and GAM.
However, for large basins, LTLR performs poorly because of the extreme overestimation
discussed earlier, while MLR, RF, and NN perform similarly well (RMSE = 14.02, 14.01, and
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15.60, respectively). Based on this experiment, RF performs the best across all ranges of
basin sizes (Avg. RMSE = 5.85), while LTLR performs similarly well in small- and medium-
sized basins where it is traditionally used, and MLR performs similarly well in large basins.
Based on RF’s success for all ranges of basin sizes, we include Figure 18 to compare raw
7Q10 estimates for the RF method to both classical methods, MLR and LTLR. Figure 18a–c
displays the actual 7Q10, as well as the LTLR, MLR, and RF estimates, arranged from the
smallest historical 7Q10 to the largest.
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The results in Figure 18a–c corroborate the results from Table 9. Logarithmic-transformed
linear regression performs best overall in terms of R2 and NSE but performs poorly in KGE
and RMSE due to its poor estimates in large basins, reflected in Figure 18c. LTLR estimates
the largest historical 7Q10, which is 90 cfs, to be 181 cfs, more than double the actual value.
Similarly, LTLR estimates the next two largest 7Q10s, which are 59.2 cfs and 79.7 cfs, to
be 186 cfs and 160 cfs, respectively. Though the LTLR vs. actual 7Q10 graph (Figure 9)
previously suggested that LTLR may be able to be expanded for large basins because the
largest 7Q10s seemed to maintain a constant distance from the perfect fit line, Figure 9 is in
log space, and differences in log space are amplified for larger numbers when returning to
standard space. Conversely, multiple linear regression performs well in large basins but
poorly in small basins, as it attempts to minimize the overall error and gives more weight to
larger 7Q10s. Lastly, the random forest method performs well overall, especially in larger
basins, suggesting that this flexible machine learning algorithm may be able to account for
the drawbacks of both LTLR and MLR.

5. Conclusions

This research improves upon current methodologies for statistically estimating the
7Q10 by analyzing multiple statistical methods, testing various topographical, landcover,
and climate variables for significance, and widening the geographical and watershed size
ranges of current methodologies. Results support that a single, generalized methodology
can be used for 7Q10 estimation throughout the entire northeast and mid-Atlantic, with
similar R2, RMSE, NSE, and KGE compared to current state-by-state StreamStats’ estimates
while only requiring one equation/model. Estimates from StreamStats display an R2, KGE,
NSE, and RMSE of 0.66, 0.66, 0.65, and 9.88, respectively, for the unimpaired gages where it
is available in the study area, while the random forest method displays an R2, KGE, NSE,
and RMSE of 0.61, 0.69, 0.41, and 8.39, respectively, for the full range of gages even after
cross-validation was applied. Two other machine learning algorithms (neural networks
and generalized additive models) were tested as well but displayed significantly worse
R2s, KGEs, NSEs, and RMSEs (0.53, 0.69, 0.36, and 9.41 and 0.53, 0.65, 0.52, and 12.15,
respectively) with the addition of the cross-validation test set.

Future work could involve testing other advanced statistical methods and/or machine
learning algorithms for better low-flow estimation. Because we were able to successfully
apply this methodology to such a large geographical footprint, other future work may
include determining the boundaries at which assuming hydrologic homogeneity is no
longer satisfied. Additional future work directly related to this study may involve landcover
and climate-altered futures. The inclusion of climate and landcover input variables, which
were both found to be statistically significant, can be used prescriptively in conjunction
with physical hydrology models to test how changing landcover and climate conditions
affect 7Q10 estimates. Because of additional stakeholder input, future work may also
involve only using 7Q10 data derived from the last 30 years of streamflow data at each site
for use as the actual historical 7Q10. Blum et al. (2019) found that using the most recent
30 years of streamflow record to derive the “true” 7Q10 when a trend is detected reduces
error and bias in 7Q10 estimators compared to using the full record of streamflow [2]. This
may account for recent climatic and hydrologic conditions that will be more representative
of future 7Q10 conditions at a particular site, but additional studies must be completed to
confirm this relationship.
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Appendix A

Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01013500 HCDN ME Fish River near Fort Kent, Maine 869.8 79.67

01022500 HCDN ME
Narraguagus River at

Cherryfield, Maine
221.5 29.24

01030500 HCDN ME
Mattawamkeag River near

Mattawamkeag, Maine
1419.4 59.16

01031500 HCDN ME
Piscataquis River near
Dover-Foxcroft, Maine

296.9 15.54

01047000 HCDN ME
Carrabassett River near North

Anson, Maine
351 44.96

01052500 HCDN NH
Diamond River near Wentworth

Location, NH
148.2 16.95

01054200 HCDN ME Wild River at Gilead, Maine 69.9 9.59

01055000 HCDN ME Swift River near Roxbury, Maine 96.8 6.82

01057000 HCDN ME
Little Androscoggin River near

South Paris, Maine
73.7 2.39

01073000 HCDN NH Oyster River near Durham, NH 12.1 0.35

01073860 HCDN MA Small Pox Brook at Salisbury, MA 1.83 0.15

01078000 HCDN NH Smith River near Bristol, NH 85.9 6.04

01094340 MA Low Flow Report MA
Whitman River near
Westminster Mass.

21.7 0.89

01094396 MA Low Flow Report MA Philips Brook at Fitchburg, Mass. 15.8 0.34

01094760 MA Low Flow Report MA
Waushacum Brook near West

Boylston, Mass.
7.41 0.06

01095220 MA Low Flow Report MA
Stillwater River near

Sterling, Mass.
30.4 1.06

01095380 MA Low Flow Report MA Trout Brook near Holden, Mass. 6.79 0.05

01095915 MA Low Flow Report MA Mulpus Brook near Shirley, Mass. 15.7 0.39

01095928 MA Low Flow Report MA Trapfall Brook near Ashby, Mass. 5.89 0.02

01096000 MA Low Flow Report MA
Squannacook River near West

Groton, MA
64.4 6.52

01096504 MA Low Flow Report MA
Reedy Meadow Brook at East

Pepperell, Mass.
1.92 0.24

01096505 MA Low Flow Report MA
Unkety Brook near

Pepperell, Mass.
6.84 0.46

01096515 MA Low Flow Report MA
Salmon Brook at Main Street at

Dunstable, Mass.
18.2 2.34

01096805 MA Low Flow Report MA North Brook near Berlin, Mass. 15.4 0.54

01096855 MA Low Flow Report MA Danforth Brook at Hudson, Mass. 6.62 0.14
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Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01096935 MA Low Flow Report MA
Elizabeth Brook at Wheeler Street

at Stow, Mass.
17.2 0.76

01097280 MA Low Flow Report MA
Fort Pond Brook at West

Concord, Mass.
24.9 0.89

01097300 MA Low Flow Report MA Nashoba Brook near Acton, MA 12.9 0.12

01099400 MA Low Flow Report MA
River Meadow Brook at

Lowell, Mass.
25.6 0.98

01100608 MA Low Flow Report MA
Meadow Brook near

Tewksbury, Mass.
4.09 0.15

01100700 MA Low Flow Report MA
East Meadow River near

Haverhill, MA
5.54 0.15

01101100 MA Low Flow Report MA Mill River near Rowley, Mass. 7.7 0.39

01102490 MA Low Flow Report MA
Shaker Glen Brook near

Woburn, Mass.
3.05 0.17

01103015 MA Low Flow Report MA Mill Brook at Arlington, Mass. 5.35 0.38

01103253 MA Low Flow Report MA
Chicken Brook near West

Medway, Mass.
7.23 0.18

01103435 MA Low Flow Report MA Waban Brook at Wellesley, Mass. 10.2 0.13

01103440 MA Low Flow Report MA Fuller Brook at Wellesley, Mass. 3.91 0.11

01104960 MA Low Flow Report MA
Germany Brook near

Norwood, Mass.
2.37 0.08

01104980 MA Low Flow Report MA Hawes Brook at Norwood, Mass. 8.64 0.29

01105568 MA Low Flow Report MA Cochato River at Holbrook, Mass. 4.31 0.09

01105575 MA Low Flow Report MA
Cranberry Brook at Braintree

Highlands, Mass.
1.72 0.01

01105600 MA Low Flow Report MA
Old Swamp River near South

Weymouth, MA
4.47 0.16

01105630 MA Low Flow Report MA
Crooked Meadow River near

Hingham Center, Mass.
4.91 0.27

01105820 MA Low Flow Report MA
Second Herring Brook at

Norwell, Mass.
3.17 0.03

01105830 MA Low Flow Report MA
First Herring Brook near Scituate

Center, Mass.
1.72 0.01

01105861 MA Low Flow Report MA
Jones River Brook near

Kingston, Mass.
4.74 0.49

01105930 MA Low Flow Report MA
Paskamanset River at Turner

Pond near New Bedford,
8.09 0.32

01105937 MA Low Flow Report MA
Shingle Island River near North

Dartmouth, Mass.
8.59 0.06

01105947 MA Low Flow Report MA
Bread and Cheese Brook at Head

of Westport, Mass.
9.25 0.14

01106000 MA Low Flow Report RI
Adamsville Brook
at Adamsville, RI

7.99 0.05

01106460 MA Low Flow Report MA
Beaver Brook near East

Bridgewater, Mass.
8.94 0.34
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Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01107400 MA Low Flow Report MA
Fall Brook near

Middleboro, Mass.
9.3 1.32

01108180 MA Low Flow Report MA
Cotley River at East

Taunton, Mass.
7.48 0.47

01108600 MA Low Flow Report MA
Hodges Brook at West

Mansfield, Mass.
3.83 0.03

01109087 MA Low Flow Report MA Assonet River at Assonet, Mass. 20.7 0.62

01109090 MA Low Flow Report MA
Rattlesnake Brook near

Assonet, Mass.
4.22 0.11

01109225 MA Low Flow Report MA Rocky Run near Rehoboth, Mass. 7.21 0.07

01109460 MA Low Flow Report MA Dark Brook at Auburn, Mass. 11.1 0.94

01111200 MA Low Flow Report MA
West River below West Hill Dam,

near Uxbridge, MA
27.8 1.80

01111225 MA Low Flow Report MA
Emerson Brook near

Uxbridge, Mass.
7.26 0.63

01111300 MA Low Flow Report RI Nipmuc River near Harrisville, RI 16 0.25

01112190 MA Low Flow Report MA
Muddy Brook at South

Milford, Mass.
6.17 0.14

01117468 HCDN RI Beaver River near Usquepaug, RI 8.87 1.78

01118300 HCDN CT
Pendleton Hill Brook near Clarks

Falls, CT
4 0.02

01121000 HCDN CT
Mount Hope River near

Warrenville, CT
27.1 0.65

01123000 HCDN CT Little River near Hanover, CT 30.1 4.36

01123140 MA Low Flow Report MA Mill Brook at Brimfield, Mass. 13.8 1.29

01123200 MA Low Flow Report MA Stevens Brook at Holland, Mass. 4.39 0.09

01124390 MA Low Flow Report MA
Little River at Richardson

Corners, Mass.
8.58 0.20

01134500 HCDN VT Moose River at Victory, VT 75.3 5.97

01137500 HCDN NH
Ammonoosuc River at Bethlehem

Junction, NH
88.2 27.36

01139000 HCDN VT Wells River at Wells River, VT 95.1 14.12

01139800 HCDN VT
East Orange Branch at East

Orange, VT
8.8 0.71

01142500 HCDN VT Ayers Brook at Randolph, VT 31.7 2.11

01144000 HCDN VT White River at West Hartford, VT 691.2 90.51

01150900 HCDN VT
Ottauquechee River near West

Bridgewater, VT
23.3 3.31

01162500 HCDN MA
Priest Brook near
Winchendon, MA

19.2 0.47

01162900 MA Low Flow Report MA Otter River at Gardner, Mass. 19.2 2.57

01164300 MA Low Flow Report MA
Lawrence Brook at
Royalston, Mass.

15.6 0.32

01167200 MA Low Flow Report MA Fall River at Bernardston, Mass. 22.3 1.46

01168300 MA Low Flow Report MA Cold River near Zoar, Mass. 29.6 1.69
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Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01168400 MA Low Flow Report MA
Chickley River near
Charlemont, Mass.

27.1 3.24

01169000 HCDN MA North River at Shattuckville, MA 89.1 8.82

01170100 HCDN MA Green River near Colrain, MA 41.3 4.73

01181000 HCDN MA
West Branch Westfield River at

Huntington, MA
94 6.03

01187300 HCDN MA
Hubbard River near West

Hartland, CT
20.8 0.45

01195100 HCDN CT Indian River near Clinton, CT 5.68 0.02

01208990 HCDN CT
Saugatuck River near

Redding, CT
20.8 0.31

01333000 HCDN MA Green River at Williamstown, MA 43.3 4.80

01350000 HCDN NY Schoharie Creek at Prattsville NY 236.5 9.47

01350080 HCDN NY
Manor Kill at West Conesville

near Gilboa, NY
32.4 1.67

01350140 HCDN NY
Mine Kill near North

Blenheim, NY
16.9 0.22

01362200 HCDN NY Esopus Creek at Allaben, NY 63.7 5.48

01365000 HCDN NY
Rondout Creek near Lowes

Corners, NY
38.4 6.26

01411300 HCDN NJ
Tuckahoe River at Head of

River, NJ
30.6 6.70

01413500 HCDN NY
East Brook Delaware River at

Margaretville, NY
163.7 11.17

01414500 HCDN NY Mill Brook near Dunraven, NY 24.9 2.26

01415000 HCDN NY Tremper Kill near Andes, NY 33.1 1.59

01423000 HCDN NY
West Branch Delaware River at

Walton, NY
331.9 23.49

01434025 HCDN NY
Biscuit Brook above Pigeon Brook

at Frost Valley, NY
3.72 0.45

01435000 HCDN NY
Neversink River near

Claryville, NY
66.6 13.99

01439500 HCDN PA Bush Kill at Shoemakers, PA 118.1 7.75

01440000 HCDN NJ Flat Brook near Flatbrookville, NJ 64.8 7.53

01440400 HCDN PA
Brodhead Creek near

Analomink, PA
67.6 7.60

01451800 HCDN PA
Jordan Creek near
Schnecksville, PA

52.4 2.78

01466500 HCDN NJ
McDonalds Branch in Lebanon

State Forest, NJ
2.1 0.82

01484100 HCDN DE
Beaverdam Branch at

Houston, DE
3.5 0.13

01485500 HCDN MD
Nassawango Creek near

Snow Hill, MD
54.6 1.17

01486000 HCDN MD
Manokin Branch near

Princess Anne, MD
4.3 0.04
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Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01487000 HCDN DE
Nanticoke River near

Bridgeville, DE
72.4 15.99

01491000 HCDN MD
Choptank River near

Greensboro, MD
112.8 4.09

01510000 HCDN NY Otselic River at Cincinnatus, NY 147.9 9.42

01516500 HCDN PA Corey Creek near Mainesburg, PA 12.2 0.01

01518862 HCDN PA
Cowanesque River

at Westfield, PA
90.6 1.45

01532000 HCDN PA
Towanda Creek

near Monroeton, PA
213.9 2.96

01539000 HCDN PA
Fishing Creek

near Bloomsburg, PA
271 17.83

01542810 HCDN PA Waldy Run near Emporium, PA 5.3 0.09

01543000 HCDN PA
Driftwood Br Sinnemahoning Cr

at Sterling Run, PA
272.4 4.51

01543500 HCDN PA
Sinnemahoning Creek at

Sinnemahoning, PA
686.6 15.50

01544500 HCDN PA Kettle Creek at Cross Fork, PA 137.1 5.07

01545600 HCDN PA
Young Womans Creek near

Renovo, PA
46.3 1.60

01547700 HCDN PA Marsh Creek at Blanchard, PA 43.8 0.66

01548500 HCDN PA Pine Creek at Cedar Run, PA 601.2 24.84

01549500 HCDN PA
Blockhouse Creek near

English Center, PA
37.6 0.79

01550000 HCDN PA
Lycoming Creek

near Trout Run, PA
174.8 7.84

01552000 HCDN PA
Loyalsock Creek at
Loyalsockville, PA

436.1 23.63

01552500 HCDN PA Muncy Creek near Sonestown, PA 23.4 1.19

01557500 HCDN PA Bald Eagle Creek at Tyrone, PA 44.5 3.19

01564500 HCDN PA
Aughwick Creek near Three

Springs, PA
205 4.41

01567500 HCDN PA Bixler Run near Loysville, PA 15 2.32

01568000 HCDN PA
Sherman Creek at Shermans Dale,

PA
206.3 15.95

01580000 HCDN MD Deer Creek at Rocks, MD 94.4 23.91

01583500 HCDN MD Western Run at Western Run, MD 60.2 11.57

01586610 HCDN MD Morgan Run near Louisville, MD 26 3.63

01591400 HCDN MD Cattail Creek near Glenwood, MD 22.8 1.71

01594950 HCDN MD
McMillan Fort near Fort

Pendleton, MD
2.3 0.00

01596500 HCDN MD Savage River near Barton, MD 48.1 1.03

01605500 HCDN WV
South Branch Potomac River at

Franklin, WV
179.1 20.64
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Station Source State Station Name Watershed Area (mi2) 7Q10 (cfs)

01606500 HCDN WV
South Branch Potomac River near

Petersburg, WV
650.4 54.55

01613050 HCDN PA
Tonoloway Creek near

Needmore, PA
10.8 0.00

01620500 HCDN VA North River near Stokesville, VA 17.3 0.23

01632000 HCDN VA
N F Shenandoah River at Cootes

Store, VA
209.8 0.84

01632900 HCDN VA
Smith Creek near New

Market, VA
94.6 7.64

01634500 HCDN VA Cedar Creek near Winchester, VA 101.9 4.67

01638480 HCDN VA
Catoctin Creek at
Taylorstown, VA

89.6 0.66

01639500 HCDN MD Big Pipe Creek at Bruceville, MD 103.2 8.10

01644000 HCDN VA Goose Creek near Leesburg, VA 331.7 2.01

01658500 HCDN VA
S F Quantico Creek near

Independent Hill, VA
7.5 0.00

01664000 HCDN VA
Rappahannock River at

Remington, VA
619.7 10.76

01666500 HCDN VA
Robinson River near Locust

Dale, VA
178.8 9.18

01667500 HCDN VA Rapidan River near Culpeper, VA 467.1 17.08

01669000 HCDN VA
Piscataway Creek near

Tappahannock, VA
27.7 0.38

01669520 HCDN VA Dragon Swamp at Mascot, VA 109 0.01

02011400 HCDN VA Jackson River near Bacova, VA 157.4 17.06

02011460 HCDN VA Back Creek near Sunrise, VA 60.4 2.01

02013000 HCDN VA
Dunlap Creek

near Covington, VA
164 10.68

02014000 HCDN VA Potts Creek near Covington, VA 153.2 17.64

02015700 HCDN VA
Bullpasture River

at Williamsville, VA
110.2 26.07

02016000 HCDN VA
Cowpasture River near Clifton

Forge, VA
461.2 57.01

02017500 HCDN VA Johns Creek at New Castle, VA 106.6 7.72

02018000 HCDN VA Craig Creek at Parr, VA 329.1 30.75

02027000 HCDN VA Tye River near Lovingston, VA 93 4.03

02027500 HCDN VA Piney River at Piney River, VA 47.6 2.60

02028500 HCDN VA
Rockfish River

near Greenfield, VA
94.8 2.50

02038850 HCDN VA
Holiday Creek near
Andersonville, VA

8.5 0.33
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